
WLRU CPU Cache Replacement Algorithm 

(Thesis Format: Monograph) 

by 

Qufei Wang 

Graduate Program in Computer Science 

Submitted in partial fulfilment 
of the requirements for the degree of 

Doctor of Philosophy 

Faculty of Graduate Studies 
The University of Western Ontario 

London, Ontario 
December, 2006 

© Qufei Wang 2006 

 
 
 
 

 
 
 

PREVIE
W



1*1 Library and 
Archives Canada 

Published Heritage 
Branch 

395 Wellington Street 
Ottawa ON K1A0N4 
Canada 

Bibliotheque et 
Archives Canada 

Direction du 
Patrimoine de I'edition 

395, rue Wellington 
Ottawa ON K1A0N4 
Canada 

Your file Votre reference 
ISBN: 978-0-494-50498-7 
Our file Notre reference 
ISBN: 978-0-494-50498-7 

NOTICE: 
The author has granted a non­
exclusive license allowing Library 
and Archives Canada to reproduce, 
publish, archive, preserve, conserve, 
communicate to the public by 
telecommunication or on the Internet, 
loan, distribute and sell theses 
worldwide, for commercial or non­
commercial purposes, in microform, 
paper, electronic and/or any other 
formats. 

AVIS: 
L'auteur a accorde une licence non exclusive 
permettant a la Bibliotheque et Archives 
Canada de reproduire, publier, archiver, 
sauvegarder, conserver, transmettre au public 
par telecommunication ou par Plntemet, prefer, 
distribuer et vendre des theses partout dans 
le monde, a des fins commerciales ou autres, 
sur support microforme, papier, electronique 
et/ou autres formats. 

The author retains copyright 
ownership and moral rights in 
this thesis. Neither the thesis 
nor substantial extracts from it 
may be printed or otherwise 
reproduced without the author's 
permission. 

L'auteur conserve la propriete du droit d'auteur 
et des droits moraux qui protege cette these. 
Ni la these ni des extraits substantiels de 
celle-ci ne doivent etre imprimes ou autrement 
reproduits sans son autorisation. 

In compliance with the Canadian 
Privacy Act some supporting 
forms may have been removed 
from this thesis. 

Conformement a la loi canadienne 
sur la protection de la vie privee, 
quelques formulaires secondaires 
ont ete enleves de cette these. 

While these forms may be included 
in the document page count, 
their removal does not represent 
any loss of content from the 
thesis. 

Canada 

Bien que ces formulaires 
aient inclus dans la pagination, 
il n'y aura aucun contenu manquant. 

 
 
 
 

 
 
 

PREVIE
W



THE UNIVERSITY OF WESTERN ONTARIO 
FACULTY OF GRADUATE STUDIES 

CERTIFICATE OF EXAMINATION 

Advisors Examining Board 

Dr. Hanan Lutfiyya Dr. Marin Litou 

Dr. Abdallah Shami 

Dr. Mark Daley 

Dr. Mike Katchabaw 

The thesis by 
Qufei Wang 

entitled 

WLRU CPU CACHE REPLACEMENT ALGORITHM 

is accepted in partial fulfilment of the 
requirements for the degree of 

Doctor of Philosophy 

Date Chair of Examining Board 

11 

 
 
 
 

 
 
 

PREVIE
W



Abstract 

A CPU consists of two parts, the CPU cores and the CPU caches. CPU caches are small but 

fast memories usually on the same die as the CPU cores. Recently used instructions and 

data are stored in CPU caches. Accessing CPU caches takes a quater to five nano seconds, 

but accessing the main memory takes 100 to 150 nano seconds. The main memory is so 

slow that the CPU is idle for more than 80% of the time waiting for memory accesses. This 

problem is known as the memory wall. The memory wall implies that faster or more CPU 

cores are of little use if the performance of CPU caches does not improve. 

Generally, larger CPU caches have higher performance but the improvement is very small. 

A smarter CPU cache replacement algorithm is of more potential. The CPU cache replace­

ment algorithm decides which cache content to be replaced. Currently, Least Recently Used 

(LRU) replacement and its variants are most widely used in CPUs. However, the perfor­

mance of LRU is not satisfactory for applications of poor locality, such as network protocols 

and applications. We found that there is a pattern in the memory references of these appli­

cations that makes LRU fails. Based on this discovery, we developed a new CPU cache 

replacement called Weighted Least Recently Used (WLRU). Trace based simulations show 

that WLRU has significant improvement over LRU for applications of poor locality. For 

example, for web servers, WLRU has 50% fewer L2 cache misses than LRU. This means 

WLRU can immediately improve the performance of web servers by more than 200%. 

CPU caches have been intensively studied in the past thirty years. WLRU has by far the 
biggest improvement. Our studies also indicate that WLRU is very close to the theoretical 
upper limit of cache replacement algorithms. This means any further improvement in CPU 

cache performance will have to come from changes to the software. In future work, we will 
investigate how to write OS and software to have better CPU cache performance. 

m 
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Chapter 1 

Introduction 

1.1 Background and Motivation 

The speed of CPUs is much faster than the speed of the main memory. CPU caches are used 
to bridge the speed gap. A CPU cache is a small memory which is usually on the same die as 
the CPU [dLJ03]. A CPU cache is much faster than the main memory but much smaller in 
size. Instructions and data recently accessed from the main memory are stored in the CPU 
cache. When the CPU requests an address, the CPU cache is checked. If found in the cache, 
it is called a cache hit otherwise it is called a cache miss. The proportion of addresses found 
in the cache is called the cache hit rate. The difference in accessing time between the main 
memory and the CPU cache is defined as the cache miss penalty. This work assumes that the 
cache miss penalty is measured using the number of CPU cycles needed to retrieve the infor­
mation from the main memory. For example, if accessing the CPU cache requires only one 
CPU cycle but accessing the main memory requires 100 CPU cycles, the cache miss penalty 
is 100. Currently, the cache miss penalties of most CPUs are already much more than 100 
[Jac03, Tho03, FH05]. Since most CPU caches are smaller than the program image in the 
main memory, when the CPU cache is full, then an existing cache entry is chosen to be re­
placed. A cache replacement algorithm decides the cache entry to be replaced. The most 
commonly used CPU cache replacement algorithm is Least Recently Used (LRU) replace­
ment [PH05]. LRU replacement evicts the cache entry which is least recently accessed. The 
use of LRU is based on the assumption that programs exhibit the property of temporal local­
ity, which is phrased as 'recently accessed items are likely to be accessed in the near future 
[HP96]. 
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In the past twenty years, the speed of CPUs doubled every 18 months, but the memory speed 

increased only 7% each year [HP02]. The speed gap between the CPU and the main mem­

ory keeps widening l, but the CPU cache hit rate is seldom higher than 99% [HP02]. As­

suming a cache hit rate of 99% and a cache penalty of 100, the CPU is idle for 50% of the 

time. Currently, main stream CPU speeds are between 2 to 4 GHz, and the main memory is 

clocked between 500 MHz to 800 MHz. Besides the data transfer time, the main memory 

made of DRAM (Dynamic Random Access Memory) also has a large latency. The latency 

of DRAM is the delay between the receiving of the read request and the readiness of data 

for transfer. The latency of the current DDR DRAM memory is at least 90 nano seconds, 

and the total transfer time of a cache line is around 120 ns 2. Assuming a CPU speed of 1 

GHz, the cache miss penalty is 120 CPU cycles. Faster CPU speeds have even larger cache 

miss penalties. Faster DRAM technologies helps little since the latency of these faster mem­

ory remains constant, if not even longer. The Semiconductor Industry Association (ISA) is 

now calculating cache miss penalties of more than 300 CPU cycles [FH05]. If the cache 

hit rate can not be improved, as the speed gap reaches a specific point, further increasing 

CPU speeds will not generate any gain in effective computing power. This is known as the 

Memory Wall problem [WM95]. 

The CPU cache is a dominant factor in computing power. Generally, a larger CPU cache 
has higher hit rates. However, there is a limit on the die for CPU caches. Recent proces­
sors have already spent 50% of the die area and more than 80% of the transistors on CPU 
caches [PHS98]. Larger CPU caches are unlikely unless revolutionary circuit technologies 
are used. This suggests other approaches to improve the CPU cache performance besides 
increasing the size of CPU caches should be examined. 

One approach to improving CPU cache performance is to find better cache replacement al­

gorithms. LRU is currently the most widely used CPU cache replacement. LRU was devel­

oped decades ago, and current computing environments are very different from that time. 

1.2 Contributions 

The contributions of this work include the following: 

'Although the CPU speed stagnated in recent years, there are always faster CPUs coming. For example, 
IBM Power6 is targeted around 5G Hz. (http://realworldtech.com/page.cfm?ArticleID=RWT101606194731) 

2 source: www.powerlogix.com/downloads/SDRDDR.pdf 
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Property of Short Lifetime. This work presents an analysis of the pattern of memory ref­

erences of programs. Of special interest is the study of inter-reference gaps (IRG) and ref­

erence counts of addresses. The reference count of an address is the number of times that 

the address is referenced. An Inter-Reference Gap (IRG) is defined as the number of refer­

ences between two consecutive references of an address. Per set IRG values are IRG values 

of an individual cache set. Our studies find that the majority of per set IRG values are small. 

This is especially true at the first-level (LI) cache where it is found that 90% of the per set 

IRG values are of size one. At the level two (L2) cache, per set IRG values are still small. 

This provides strong evidence of temporal locality. However, our studies also show that a 

large portion of addresses have low reference counts. At the L2 cache, nearly 50% of all ad­

dresses are referenced only once, and nearly 90% of all addresses are referenced under ten 

times. This pattern is named the property of short lifetime. This suggests that LRU is less 

effective for programs that have a large portion of its addresses with low reference counts, 

since LRU does not distinguish between addresses with low reference counts and addresses 

with high reference counts, which turns out to be the case of many networked applications. 

Development of a New Cache Replacement Algorithm. Based on the property of short 
lifetime a new cache replacement algorithm, which is a modification of LRU, was devel­
oped. This new algorithm is referred to as Weighted Least Recently Used (WLRU) . Simula­
tions show that WLRU has significantly fewer cache misses than LRU for network protocols 
and applications. For other programs, such as SPEC benchmark programs, the difference in 
the hit rates of WLRU and LRU is unnoticeable. This means the superiority of WLRU over 
LRU for network protocols and applications does not harm the performance of traditional 
applications like SPEC benchmarks. WLRU can replace LRU in general purpose CPUs. 

Example Circuit and Simulator. An example circuit of a CPU cache using WLRU re­
placement is presented in this work. The circuit shows that the cost of implementing WLRU 
is minimal. WLRU is requires less than 3% of more space than LRU. A trace based simula­
tor is also developed. The simulator implements WLRU, LRU, pseudo-LRU replacements, 
and off-line optimal replacement. The simulator is written in Java and contains bookkeep­
ing information not found in other simulators. This information is used to investigate the 
behavior of different cache replacements and designs. 

1.3 Outline of Dissertation 

The rest of this work is organized as follows. 
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Chapter 2 describes related research in cache replacement algorithms. Some background 

introduction to CPU cache designs is included. Cache replacements in fields other than CPU 

caches, such as database buffer caches, are introduced in chapter 2. Chapter 2 also discusses 

previous studies on the impact of cache performance on network protocols and applications. 

Chapter 3 discusses the empirical analysis methods used for the study of the memory ac­

cesses of programs and the results of the analysis. The property of short lifetime is intro­

duced in chapter 3. 

Chapter 4 discusses the locality characteristics of network protocols and applications. 

Chapter 5 presents a new CPU cache replacement algorithm called the WLRUreplacement 

algorithm. 

Chapter 6 presents an example hardware implementation of WLRU cache in CPU. The hard­
ware cost of implementing WLRU replacement is analyzed and compared with the cost of 
implementing LRU replacement in CPU caches. 

Chapter 7 describes the design of the CPU cache simulator. The CPU cache simulator in 

this work is different from other CPU cache simulators in that its focus is on the cache re­

placement algorithms. Other unique features include the victim analysis and a fast imple­

mentation of the off-line optimal replacement algorithm. 

Chapter 8 presents a simulation comparison of the hit rates of WLRU and LRU replacement 
algorithms on the SPEC benchmark programs and network protocols and applications. Sim­
ulation results of the off-line optimal replacement (OPT) are provided to better understand 
the improvement of WLRU over LRU. 

Chapter 9 presents conclusions and a plan for future research. 
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Chapter 2 

Background and Related Research 

CPU caches have been intensively studied for the last thirty years. This chapter briefly ex­
amines the design issues of current CPU caches and research on CPU cache performance 
of network protocols and applications. 

2.1 Background on CPU Caches 

This section introduces the basics of CPU cache design. 

2.1.1 Memory Hierarchy 

Modern CPUs have a hierarchy of memories. A higher level of memory is faster than a 
lower level of memory, but the higher level memory is also smaller in size and more expen­
sive. The highest level or levels of memory are called the CPU cache. Currently, the CPU 
cache is on the same die as the CPU execution unit. CPU caches are always made of SRAM 
(Static Random Access Memory). The main memory is made of DRAM (Dynamic Random 
Access Memory). Visiting the main memory incurs a long latency, typically around 100 ns, 
and then fetching the data costs another 2 ns each word'. The time to visit the main memory 
is equal to several hundred CPU cycles. CPU caches can reduce the time to a single CPU 
cycle since CPU caches are made of SRAM and are usually on the same die as the CPU 
execution units. Figure 2.1 shows a hierarchy of memories. The first and the second levels 

source: www.powerlogix.com/downloads/SDRDDR.pdf 
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of the hierarchy are CPU caches, and the third level is the main memory. The fourth level 

of the hierarchy is the virtual memory on the disk storage. CPU caches contain a subset of 

the main memory. 

CPU 

L1 Cache 

L2 Cache 

Main Memory 

Virtual Memory 

Circuit Technology 

SRAM 

SRAM 

DRAM 

Disk 

Figure 2.1: The structure of an four levels memory hierarchy. 

2.1.2 Cache Lines and Cache Hits 

The unit of transfer of data between the CPU execution unit and the cache is a word. Data 

transfer between the cache and the main memory is multiple memory words. This takes 

advantage of the spatial locality principle in that if one memory location is read then nearby 

memory locations are likely to be read [HP96]. Thus CPU caches are organized into cache 

lines where each cache line consists of the words read in a single transfer of data between the 

main memory and CPU cache. A cache line (depicted in Figure 2.2) consists of an address 

tag, status bits and data from the main memory. Transfer of more than one word also has 

advantages with respect to the memory bandwidth. The latency of visiting the main memory 

is amortized among multiple words. Cache lines also save space since multiple words share 

an address tag. 

The part of the address of a main memory word is referred to as the address tag. When 
the CPU references a main memory word, the address tag part of the address of the main 
memory word is taken out. The tag of each cache line is compared with the address tag 
of the memory word being referenced by the CPU. If there is a match between a tag of a 
cache line and the address tag of the word then there is said to be a cache hit, otherwise it 
is a cache miss. In the case of a cache hit, the referenced word is directly accessed from 
the cache, avoiding the latency in retrieving the memory word from the main memory. In 
the case of a cache miss the referenced word is accessed from the main memory. There are 
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two status bits in a cache line. The valid status bit is used to indicate that a cache line is not 

empty. The dirty status bit is set when the data in a cache line changes. 

Tag V D Data 

Figure 2.2: The structure of a CPU cache line. 

2.1.3 Set Associative Caches 

An important design aspect of CPU caches is determining where in the cache the retrieved 

data from main memory can be placed. If a main memory word can only be placed in a 

single cache location then the cache is called a direct-mapped cache. Figure 2.3(a) shows 

the mapping of a main memory word into a direct-mapped cache. The direct-mapped cache 

has m cache lines and the lowest log™ bits of the address is used to map a main memory 

word into the cache. When deciding cache hits or misses, direct-mapped caches only need 

to compare a single address tag. Thus direct-mapped caches are fast. The problem with 

direct-mapped cache is that it incurs more cache misses, which can be illustrated with the 

following example. Suppose a program generates a series of memory references such as the 

following: OxlCD, 0x3CD, OxlCD, 0x3CD. Both of the two memory words are mapped to 

the same cache line. This sequence of references causes a continuous stream of evictions 

and replacements of cache lines. Thus, direct-mapped caches are fast but also have lower 

hit rates. Studies [Prz90, HS89] found that reducing associativity from two-way to direct-

mapped increases the miss rate by 25%. 

Another approach would allow a unit of data transfer to be placed in any one of the cache 
lines in the cache. This is called a fully-associative cache. Replacement of data in a cache 
line only occurs when the entire cache has filled up. The replacement algorithm in a fully-
associative cache can replace any cache line in the cache with the incoming cache line. 
Fully-associative caches are believed to have the highest hit rates [HROO] for a large number 
of replacement algorithms. The address tag is compared in parallel with all of the tags of all 
the cache lines in order to retrieve the data quickly. However, a CPU cache typically consists 
of hundreds of thousands of cache lines. The circuitry needed to do the parallel comparison 
of all tags is expensive. Thus, except for some very small caches, no CPU caches are fully 
associative [PH05]. 

 
 
 
 

 
 
 

PREVIE
W



8 

A set associative cache combines concepts from direct-mapped cache and fully-associative 

cache. Cache lines are organized into cache sets. A main memory word can be placed in 

only one cache set but may be placed into any of the cache lines in the cache set. Essentially 

this means that a memory word can only be placed in a subset of the cache. A main memory 

address is divided into three fields: an address tag, set index and block offset. The set index 

field is used to determine the cache set. The address tag uniquely identifies the memory word 

and the offset is used to find the word within cache line. A set associative cache becomes a 

fully associative cache when the cache has only one cache set. 

The number of cache lines in a cache set is referred to as the associativity of the cache. For 

example, if there are four cache lines in a cache set, the associativity is four, and the cache is 

called a four-way set associative cache. Figure 2.3(b) shows the mapping of a main memory 

word into a two-way set associative cache. The cache has the same number m of cache lines 

and is arranged into ra/2 cache set. Each main memory word has two possible locations in 

the cache. The lowest log™' bits of the address is used to map the word into the cache. 

Figure 2.4 shows the structure an eight-way set associative CPU cache. The cache has 1024 

cache sets. Each cache set has eight cache lines. Each cache line stores eight words. The 

address the CPU is currently referencing is stored in the address latch. The middle ten bits of 

the address latch is mapped to one of the 1024 cache sets. The lowest three bits is the block 

offset to index into the eight words of a cache line. The highest 19 bits form the address tag. 

All the eight address tags of a cache set are compared with the address tag in the address 

latch. If there is a match, the hit/miss signal indicates a cache hit or miss. 

2.1.4 Multiple Level CPU Caches 

Modern CPUs usually have a hierarchy of caches. Most of the current CPUs have two levels 

of CPU caches. The first level CPU cache is called the LI cache and can be accessed in one 

or two cycles. The gate delay and wire delay limits the size of the LI cache. Typically, the 

LI cache is only 32KB or 64KB. The same speed constraint also limits the associativity of 

the LI cache. To achieve high speed, the LI cache may be direct-mapped. 

The second level cache is called the L2 cache. L2 caches are typically accessed in around ten 
CPU cycles and are much larger than LI caches [PH05]. The L2 cache usually has higher 
associativity. L2 caches can be 16 or 32 way associative. Besides the LI and the L2 caches, 
some CPUs have a level three cache. L3 caches are slower and larger than L1 and L2 caches. 
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Figure 2.3: The mapping of the main memory words into a direct-mapped cache and a two-
way associative cache. 

Currently, both the L1 and the L2 caches use LRU replacement. LRU replacement at L2 and 
L3 caches are actually Least Recently Missed replacement. The references at the LI cache 
are invisible to the lower level caches. The most recently referenced or loaded address at 
the L2 or L3 cache is not necessarily the address which the CPU most recently referenced 
but the address most recently missed in the higher level cache. Since references to items in 
the L2 cache are not exactly what the CPU is currently referencing but misses from the LI 
cache, LRU at L2 and lower level caches is actually least recently missed replacement algo­
rithm. LRU at L2 cache does not exactly follow the definition of temporal locality [PHS98]. 
The hit rates of the LRU replacement at the L2 or L3 cache are low. This is considered by 
[PHS98] to be a problem of LRU. 
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