
WLRU CPU Cache Replacement Algorithm

(Thesis Format: Monograph)

by

Qufei Wang

Graduate Program in Computer Science

Submitted in partial fulfilment
of the requirements for the degree of

Doctor of Philosophy

Faculty of Graduate Studies
The University of Western Ontario

London, Ontario
December, 2006

© Qufei Wang 2006

PREVIE
W

1*1 Library and
Archives Canada

Published Heritage
Branch

395 Wellington Street
Ottawa ON K1A0N4
Canada

Bibliotheque et
Archives Canada

Direction du
Patrimoine de I'edition

395, rue Wellington
Ottawa ON K1A0N4
Canada

Your file Votre reference
ISBN: 978-0-494-50498-7
Our file Notre reference
ISBN: 978-0-494-50498-7

NOTICE:
The author has granted a non­
exclusive license allowing Library
and Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non­
commercial purposes, in microform,
paper, electronic and/or any other
formats.

AVIS:
L'auteur a accorde une licence non exclusive
permettant a la Bibliotheque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par telecommunication ou par Plntemet, prefer,
distribuer et vendre des theses partout dans
le monde, a des fins commerciales ou autres,
sur support microforme, papier, electronique
et/ou autres formats.

The author retains copyright
ownership and moral rights in
this thesis. Neither the thesis
nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

L'auteur conserve la propriete du droit d'auteur
et des droits moraux qui protege cette these.
Ni la these ni des extraits substantiels de
celle-ci ne doivent etre imprimes ou autrement
reproduits sans son autorisation.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

Conformement a la loi canadienne
sur la protection de la vie privee,
quelques formulaires secondaires
ont ete enleves de cette these.

While these forms may be included
in the document page count,
their removal does not represent
any loss of content from the
thesis.

Canada

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

PREVIE
W

THE UNIVERSITY OF WESTERN ONTARIO
FACULTY OF GRADUATE STUDIES

CERTIFICATE OF EXAMINATION

Advisors Examining Board

Dr. Hanan Lutfiyya Dr. Marin Litou

Dr. Abdallah Shami

Dr. Mark Daley

Dr. Mike Katchabaw

The thesis by
Qufei Wang

entitled

WLRU CPU CACHE REPLACEMENT ALGORITHM

is accepted in partial fulfilment of the
requirements for the degree of

Doctor of Philosophy

Date Chair of Examining Board

11

PREVIE
W

Abstract

A CPU consists of two parts, the CPU cores and the CPU caches. CPU caches are small but

fast memories usually on the same die as the CPU cores. Recently used instructions and

data are stored in CPU caches. Accessing CPU caches takes a quater to five nano seconds,

but accessing the main memory takes 100 to 150 nano seconds. The main memory is so

slow that the CPU is idle for more than 80% of the time waiting for memory accesses. This

problem is known as the memory wall. The memory wall implies that faster or more CPU

cores are of little use if the performance of CPU caches does not improve.

Generally, larger CPU caches have higher performance but the improvement is very small.

A smarter CPU cache replacement algorithm is of more potential. The CPU cache replace­

ment algorithm decides which cache content to be replaced. Currently, Least Recently Used

(LRU) replacement and its variants are most widely used in CPUs. However, the perfor­

mance of LRU is not satisfactory for applications of poor locality, such as network protocols

and applications. We found that there is a pattern in the memory references of these appli­

cations that makes LRU fails. Based on this discovery, we developed a new CPU cache

replacement called Weighted Least Recently Used (WLRU). Trace based simulations show

that WLRU has significant improvement over LRU for applications of poor locality. For

example, for web servers, WLRU has 50% fewer L2 cache misses than LRU. This means

WLRU can immediately improve the performance of web servers by more than 200%.

CPU caches have been intensively studied in the past thirty years. WLRU has by far the
biggest improvement. Our studies also indicate that WLRU is very close to the theoretical
upper limit of cache replacement algorithms. This means any further improvement in CPU

cache performance will have to come from changes to the software. In future work, we will
investigate how to write OS and software to have better CPU cache performance.

m

PREVIE
W

Acknowledgements

I would like to gratefully acknowledge the supervision of Professor Hanan Lutfiyya during

this work. Many thanks to her for her patience, tolerance and support.

I am grateful to all my friends in Computer Science Department, University of Western On­

tario. From the staff, Janice Wiersma and Cheryl McGrath are especially thanked for their

care and attention.

Finally, I am forever indebted to my wife Min and my parents. The support from Min is the

source of strength helped me through the many years.

IV

PREVIE
W

Table of Contents

CERTIFICATE OF EXAMINATION ii

ABSTRACT iii

ACKNOWLEDGEMENTS iv

TABLE OF CONTENTS v

LIST OF FIGURES ix

LIST OF TABLES xiii

1 Introduction 1

1.1 Background and Motivation . 1

1.2 Contributions 2

1.3 Outline of Dissertation 3

2 Background and Related Research 5

2.1 Background on CPU Caches 5

2.1.1 Memory Hierarchy 5

2.1.2 Cache Lines and Cache Hits 6

2.1.3 Set Associative Caches 7

2.1.4 Multiple Level CPU Caches 8

v

PREVIE
W

2.2 Efforts to Improve Cache Hit Rates 10

2.2.1 Cache Line Size, Prefetching and Stream Buffer 10

2.2.2 Cache Sizes and Hit Rates 12

2.2.3 Cache Associativity and Victim Cache 13

2.2.4 Split Instruction and Data Cache 14

2.3 Cache Replacement Algorithms Other Than LRU 15

2.3.1 Pseudo-LRU Replacements 15

2.3.2 First-In-First-Out and Random Replacements 16

2.3.3 LRU-fc and LIRS Replacement Algorithms 17

2.3.4 LFU and FBR Replacement Algorithms 19

2.3.5 LRFU, Multi-Queue and EELRU Replacement Algorithms 20

2.3.6 Dead Alive Prediction Replacement Algorithms 21

2.3.7 Off-Line Optimal Replacement Algorithm 21

2.3.8 Summary of Replacements 22

2.4 CPU Cache Issues of Network Protocols and Applications 23

2.5 Summary 24

3 Principle of Locality and Property of Short Lifetime 26

3.1 Memory Reference Traces 26

3.2 Principle of Temporal Locality and LRU 28

3.3 Inter-Reference Gaps and Temporal Locality 29

3.3.1 Inter-Reference Gaps and LRU 30

3.3.2 Complete Program Stream and Per Set IRG Values 30

3.3.3 Distributions of Per Set IRG Values and Temporal Locality 32

3.4 Reference Counts and Property of Short Lifetime 34

3.4.1 Property of Short Lifetime 34

3.4.2 Reference Counts of Cache Lines 34

vi

PREVIE
W

3.5 Relationship between Average Reference Counts and LRU Hit Rates 36

3.6 L2 IRG and Reference Count Distributions 38

3.6.1 L2 Reference Count Distributions 38

3.6.2 L2 IRG Distributions 40

3.7 Summary 41

4 Locality Characteristics of Network Protocols and Applications 43

4.1 Motivation 43

4.2 Memory Traces of Web Servers 44

4.3 Average Reference Counts of Web Server Memory Traces 45

4.4 Reference Count Distributions of Web Server Memory Traces 46

4.5 L2 Distributions of Reference Counts of Web Server Memory Traces 47

4.6 L2 IRG Distributions of Web Server Memory Traces 48

4.7 Summary 49

5 WLRU Cache Replacement 53

5.1 Correlation of IRG and Reference Counts 53

5.2 Problems with LRU and LFU 55

5.3 WLRU Cache Replacement 56

5.4 Notation Used to Represent WLRU Parameter Settings 57

5.5 WLRU Mimicking LRU 58

5.6 Comparison of WLRU with Other Cache Replacement Algorithms 58

5.7 Summary 61

6 Hardware Implementations of WLRU 63

6.1 Space Requirements of WLRU 63

6.2 Overall Structure of WLRU CPU Cache 63

6.3 Hit/Miss Logic 68

vii

PREVIE
W

6.4 Weight Control Logic 70

6.5 Replacement and Line-Fill/Cast-Out Logic 71

6.6 Comparison of WLRU and LRU 72

6.7 Summary 73

7 WLRU CPU Cache Simulator 78

7.1 Memory Trace Based CPU Cache Simulations 79

7.2 Architecture of CPU Cache Simulator 80

7.2.1 SimuEngine Object and Trace Synthesizing 80

7.2.2 CacheDevice Interface 82

7.3 Cache Sets and Replacement Objects 82

7.4 WLRU Replacements 84

7.5 Optimal Replacement Algorithm 85

7.6 Victim Analysis 86

7.7 Validation of Simulator 86

7.8 Summary 87

8 Simulation Results 90

8.1 Experimental Design 90

8.2 WLRU on Web Server Memory Traces 93

8.3 WLRU on SPEC CPU2000 Benchmarks 96

8.4 WLRU Performance on Multi-threaded Workloads 99

8.5 Comparison of LRU and WLRU Using Victim Analysis 101

8.6 Summary 108

9 Conclusions and Future Research 112

9.1 Conclusions 112

9.2 Future Research 113

viii

PREVIE
W

9.2.1 Hardware Prototype 114

9.2.2 Locality Analysis for More Applications Domains 114

9.2.3 OS and algorithm Design Issues 115

A Analysis and Simulation Results 116

References 117

VITA 125

IX

PREVIE
W

List of Figures

2.1 The structure of an four levels memory hierarchy. 6

2.2 The structure of a CPU cache line 7

2.3 The mapping of the main memory words into a direct-mapped cache and a

two-way associative cache 9

2.4 The structure of an eight-way set associative cache 10

2.5 Storage arrangements of an eight-way associative cache set using real LRU
and PLRU replacements 16

2.6 Storage arrangements of an eight-way associative cache set using PLRU-

tree replacement 17

2.7 Storage arrangements of an eight-way associative cache set using PLRU-
msb replacement 18

2.8 An example of the Optimal replacement decision 22

3.1 Two per set IRG values and their corresponding whole stream IRG values. . 29

3.2 IRG strings of three addresses in the CC1 trace [PG95]. IRG index is the

index number of the first reference of an IRG gap 31

3.3 The distributions of per set IRG values of eight SPEC benchmarks 33

3.4 The distributions of per address reference counts of eight SPEC benchmarks.
35

3.5 The distributions of reference counts of cache lines of eight SPEC bench­

marks 36

3.6 The average reference counts of SPEC integer benchmarks and their miss

rates under LRU 37

x

PREVIE
W

3.7 The average reference counts of SPEC floating point benchmarks and their

miss rates under LRU 38

3.8 The distributions ofL2 reference counts of eight SPEC benchmarks 39

3.9 The distributions of L2 IRG values of eight SPEC benchmarks 40

3.10 The distributions of L2 IRG values of SPEC benchmarks on log2 scale. . . 41

4.1 The distributions of per address reference counts of four web sever memory
traces 48

4.2 The distributions of reference counts of cache lines of four web server mem­

ory traces 49

4.3 The distributions of reference counts of cache lines of four web server mem­

ory traces at the L2 cache 50

4.4 The distributions of IRG values of four web server memory traces at the L2
cache 50

5.1 Comparison of the replacement decision of WLRU and LRU 59

6.1 Storage arrangement of an eight-way associative cache set using WLRU re­

placement 64

6.2 The structure of a CPU cache using WLRU replacement 65

6.3 The RAM memory arrays used in an associative of the WLRU CPU cache. 66

6.4 The data path, address path and control signals of the WLRU CPU cache. . 68

6.5 The hit/miss logic of the WLRU CPU cache 69

6.6 The weight control logic of the WLRU CPU cache 74

6.7 The weight arithmetic circuit of the weight control logic 75

6.8 The line-fill/cast-out logic of the WLRU CPU cache 76

6.9 The replacement logic of the WLRU CPU cache 77

7.1 The architecture of the CPU cache simulator. 80

7.2 An example trace synthesizing scenario which includes context switching
effects 81

xi

PREVIE
W

7.3 The UML graph of CacheDevice interface 83

7.4 A flow chart of the cyclePing() method of class SetCache 84

7.5 The UML graph of CacheSet class, which is the base class of all replace­

ments 88

7.6 The flow chart of the referencedQ and replaceQ method of WLRU class. . . 89

8.1 Comparison of miss rates of WLRU, LRU and Optimal on Apache traces. . 94

8.2 Comparison of miss rates of WLRU, LRU and Optimal on Apache traces

with mixed web page sizes 95

8.3 Comparison of miss rates of WLRU, LRU and Optimal on thttpd traces. . . 96

8.4 Comparison of miss rates of WLRU, LRU and Optimal on thttpd traces with

mixed web page sizes 97

8.5 Comparison of miss rates of OPT, LRU and WLRU on SPEC integer bench­
marks 98

8.6 Comparison of miss rates of OPT, LRU and WLRU on SPEC floating point

benchmarks 99

8.7 Comparison of miss rates of OPT, LRU and WLRU on SPEC integer bench­

marks, where WLRU using i64r256b32 101

8.8 Comparison of miss rates of OPT, LRU and WLRU on SPEC floating point
benchmarks, where WLRU using i64r256b32 102

8.9 The miss rates of LRU, WLRU and OPT replacements on multi-threading

SPEC INT benchmarks 102

8.10 The miss rates of LRU, WLRU and OPT replacements on multi-threading

SPEC FLT benchmarks 103

8.11 The distributions of idle time of WLRU, LRU and OPT replacements of

network trace t20kr50 107

8.12 The distributions of stay time of WLRU, LRU and OPT replacements of

network trace t20kr50 108

8.13 The distributions of idle time of WLRU, LRU and OPT replacements of

network trace t20kr90 109

xii

PREVIE
W

8.14 The distributions of stay time of WLRU, LRU and OPT replacements of

network trace t20kr90 110

8.15 The distributions of idle time of WLRU, LRU and OPT replacements of

SPEC benchmark crafty I l l

8.16 The distributions of stay time of WLRU, LRU and OPT replacements of

SPEC benchmark crafty I l l

xin

PREVIE
W

List of Tables

2.1 Typical miss rates of LRU and Random with different cache sizes and associativities[HP96]. 17

4.1 Names of network traces and their configurations 46

4.2 Average reference counts of network traces 47

4.3 Percentages of IRG values < 16 and percentages of IRG values > 256 of

SPEC benchmarks 51

4.4 Percentages of IRG values < 16 and percentages of IRG values > 256 of
network traces 52

5.1 The IRG values of address tags mapping to set0 of SPEC benchmark crafty. 54

5.2 The IRG values of address tags mapping to set0 of network trace a20kr50. . 54

5.3 Comparison of total cache misses of LRU and weight formulas mimicking

LRU 58

8.1 The IRG values of address tags with reference count of two in set0 of SPEC

benchmark swim 100

8.2 The distribution of victim hit counts of WLRU and LRU replacements on
network trace t20kr50 105

8.3 The distribution of victim hit counts of WLRU and LRU replacements on
SPEC benchmark crafty 106

xiv

PREVIE
W

Chapter 1

Introduction

1.1 Background and Motivation

The speed of CPUs is much faster than the speed of the main memory. CPU caches are used
to bridge the speed gap. A CPU cache is a small memory which is usually on the same die as
the CPU [dLJ03]. A CPU cache is much faster than the main memory but much smaller in
size. Instructions and data recently accessed from the main memory are stored in the CPU
cache. When the CPU requests an address, the CPU cache is checked. If found in the cache,
it is called a cache hit otherwise it is called a cache miss. The proportion of addresses found
in the cache is called the cache hit rate. The difference in accessing time between the main
memory and the CPU cache is defined as the cache miss penalty. This work assumes that the
cache miss penalty is measured using the number of CPU cycles needed to retrieve the infor­
mation from the main memory. For example, if accessing the CPU cache requires only one
CPU cycle but accessing the main memory requires 100 CPU cycles, the cache miss penalty
is 100. Currently, the cache miss penalties of most CPUs are already much more than 100
[Jac03, Tho03, FH05]. Since most CPU caches are smaller than the program image in the
main memory, when the CPU cache is full, then an existing cache entry is chosen to be re­
placed. A cache replacement algorithm decides the cache entry to be replaced. The most
commonly used CPU cache replacement algorithm is Least Recently Used (LRU) replace­
ment [PH05]. LRU replacement evicts the cache entry which is least recently accessed. The
use of LRU is based on the assumption that programs exhibit the property of temporal local­
ity, which is phrased as 'recently accessed items are likely to be accessed in the near future
[HP96].

PREVIE
W

2

In the past twenty years, the speed of CPUs doubled every 18 months, but the memory speed

increased only 7% each year [HP02]. The speed gap between the CPU and the main mem­

ory keeps widening l, but the CPU cache hit rate is seldom higher than 99% [HP02]. As­

suming a cache hit rate of 99% and a cache penalty of 100, the CPU is idle for 50% of the

time. Currently, main stream CPU speeds are between 2 to 4 GHz, and the main memory is

clocked between 500 MHz to 800 MHz. Besides the data transfer time, the main memory

made of DRAM (Dynamic Random Access Memory) also has a large latency. The latency

of DRAM is the delay between the receiving of the read request and the readiness of data

for transfer. The latency of the current DDR DRAM memory is at least 90 nano seconds,

and the total transfer time of a cache line is around 120 ns 2. Assuming a CPU speed of 1

GHz, the cache miss penalty is 120 CPU cycles. Faster CPU speeds have even larger cache

miss penalties. Faster DRAM technologies helps little since the latency of these faster mem­

ory remains constant, if not even longer. The Semiconductor Industry Association (ISA) is

now calculating cache miss penalties of more than 300 CPU cycles [FH05]. If the cache

hit rate can not be improved, as the speed gap reaches a specific point, further increasing

CPU speeds will not generate any gain in effective computing power. This is known as the

Memory Wall problem [WM95].

The CPU cache is a dominant factor in computing power. Generally, a larger CPU cache
has higher hit rates. However, there is a limit on the die for CPU caches. Recent proces­
sors have already spent 50% of the die area and more than 80% of the transistors on CPU
caches [PHS98]. Larger CPU caches are unlikely unless revolutionary circuit technologies
are used. This suggests other approaches to improve the CPU cache performance besides
increasing the size of CPU caches should be examined.

One approach to improving CPU cache performance is to find better cache replacement al­

gorithms. LRU is currently the most widely used CPU cache replacement. LRU was devel­

oped decades ago, and current computing environments are very different from that time.

1.2 Contributions

The contributions of this work include the following:

'Although the CPU speed stagnated in recent years, there are always faster CPUs coming. For example,
IBM Power6 is targeted around 5G Hz. (http://realworldtech.com/page.cfm?ArticleID=RWT101606194731)

2 source: www.powerlogix.com/downloads/SDRDDR.pdf

PREVIE
W

http://realworldtech.com/page.cfm?ArticleID=RWT101606194731
http://www.powerlogix.com/downloads/SDRDDR.pdf

3

Property of Short Lifetime. This work presents an analysis of the pattern of memory ref­

erences of programs. Of special interest is the study of inter-reference gaps (IRG) and ref­

erence counts of addresses. The reference count of an address is the number of times that

the address is referenced. An Inter-Reference Gap (IRG) is defined as the number of refer­

ences between two consecutive references of an address. Per set IRG values are IRG values

of an individual cache set. Our studies find that the majority of per set IRG values are small.

This is especially true at the first-level (LI) cache where it is found that 90% of the per set

IRG values are of size one. At the level two (L2) cache, per set IRG values are still small.

This provides strong evidence of temporal locality. However, our studies also show that a

large portion of addresses have low reference counts. At the L2 cache, nearly 50% of all ad­

dresses are referenced only once, and nearly 90% of all addresses are referenced under ten

times. This pattern is named the property of short lifetime. This suggests that LRU is less

effective for programs that have a large portion of its addresses with low reference counts,

since LRU does not distinguish between addresses with low reference counts and addresses

with high reference counts, which turns out to be the case of many networked applications.

Development of a New Cache Replacement Algorithm. Based on the property of short
lifetime a new cache replacement algorithm, which is a modification of LRU, was devel­
oped. This new algorithm is referred to as Weighted Least Recently Used (WLRU) . Simula­
tions show that WLRU has significantly fewer cache misses than LRU for network protocols
and applications. For other programs, such as SPEC benchmark programs, the difference in
the hit rates of WLRU and LRU is unnoticeable. This means the superiority of WLRU over
LRU for network protocols and applications does not harm the performance of traditional
applications like SPEC benchmarks. WLRU can replace LRU in general purpose CPUs.

Example Circuit and Simulator. An example circuit of a CPU cache using WLRU re­
placement is presented in this work. The circuit shows that the cost of implementing WLRU
is minimal. WLRU is requires less than 3% of more space than LRU. A trace based simula­
tor is also developed. The simulator implements WLRU, LRU, pseudo-LRU replacements,
and off-line optimal replacement. The simulator is written in Java and contains bookkeep­
ing information not found in other simulators. This information is used to investigate the
behavior of different cache replacements and designs.

1.3 Outline of Dissertation

The rest of this work is organized as follows.

PREVIE
W

4

Chapter 2 describes related research in cache replacement algorithms. Some background

introduction to CPU cache designs is included. Cache replacements in fields other than CPU

caches, such as database buffer caches, are introduced in chapter 2. Chapter 2 also discusses

previous studies on the impact of cache performance on network protocols and applications.

Chapter 3 discusses the empirical analysis methods used for the study of the memory ac­

cesses of programs and the results of the analysis. The property of short lifetime is intro­

duced in chapter 3.

Chapter 4 discusses the locality characteristics of network protocols and applications.

Chapter 5 presents a new CPU cache replacement algorithm called the WLRUreplacement

algorithm.

Chapter 6 presents an example hardware implementation of WLRU cache in CPU. The hard­
ware cost of implementing WLRU replacement is analyzed and compared with the cost of
implementing LRU replacement in CPU caches.

Chapter 7 describes the design of the CPU cache simulator. The CPU cache simulator in

this work is different from other CPU cache simulators in that its focus is on the cache re­

placement algorithms. Other unique features include the victim analysis and a fast imple­

mentation of the off-line optimal replacement algorithm.

Chapter 8 presents a simulation comparison of the hit rates of WLRU and LRU replacement
algorithms on the SPEC benchmark programs and network protocols and applications. Sim­
ulation results of the off-line optimal replacement (OPT) are provided to better understand
the improvement of WLRU over LRU.

Chapter 9 presents conclusions and a plan for future research.

PREVIE
W

Chapter 2

Background and Related Research

CPU caches have been intensively studied for the last thirty years. This chapter briefly ex­
amines the design issues of current CPU caches and research on CPU cache performance
of network protocols and applications.

2.1 Background on CPU Caches

This section introduces the basics of CPU cache design.

2.1.1 Memory Hierarchy

Modern CPUs have a hierarchy of memories. A higher level of memory is faster than a
lower level of memory, but the higher level memory is also smaller in size and more expen­
sive. The highest level or levels of memory are called the CPU cache. Currently, the CPU
cache is on the same die as the CPU execution unit. CPU caches are always made of SRAM
(Static Random Access Memory). The main memory is made of DRAM (Dynamic Random
Access Memory). Visiting the main memory incurs a long latency, typically around 100 ns,
and then fetching the data costs another 2 ns each word'. The time to visit the main memory
is equal to several hundred CPU cycles. CPU caches can reduce the time to a single CPU
cycle since CPU caches are made of SRAM and are usually on the same die as the CPU
execution units. Figure 2.1 shows a hierarchy of memories. The first and the second levels

source: www.powerlogix.com/downloads/SDRDDR.pdf

PREVIE
W

http://www.powerlogix.com/downloads/SDRDDR.pdf

6

of the hierarchy are CPU caches, and the third level is the main memory. The fourth level

of the hierarchy is the virtual memory on the disk storage. CPU caches contain a subset of

the main memory.

CPU

L1 Cache

L2 Cache

Main Memory

Virtual Memory

Circuit Technology

SRAM

SRAM

DRAM

Disk

Figure 2.1: The structure of an four levels memory hierarchy.

2.1.2 Cache Lines and Cache Hits

The unit of transfer of data between the CPU execution unit and the cache is a word. Data

transfer between the cache and the main memory is multiple memory words. This takes

advantage of the spatial locality principle in that if one memory location is read then nearby

memory locations are likely to be read [HP96]. Thus CPU caches are organized into cache

lines where each cache line consists of the words read in a single transfer of data between the

main memory and CPU cache. A cache line (depicted in Figure 2.2) consists of an address

tag, status bits and data from the main memory. Transfer of more than one word also has

advantages with respect to the memory bandwidth. The latency of visiting the main memory

is amortized among multiple words. Cache lines also save space since multiple words share

an address tag.

The part of the address of a main memory word is referred to as the address tag. When
the CPU references a main memory word, the address tag part of the address of the main
memory word is taken out. The tag of each cache line is compared with the address tag
of the memory word being referenced by the CPU. If there is a match between a tag of a
cache line and the address tag of the word then there is said to be a cache hit, otherwise it
is a cache miss. In the case of a cache hit, the referenced word is directly accessed from
the cache, avoiding the latency in retrieving the memory word from the main memory. In
the case of a cache miss the referenced word is accessed from the main memory. There are

PREVIE
W

7

two status bits in a cache line. The valid status bit is used to indicate that a cache line is not

empty. The dirty status bit is set when the data in a cache line changes.

Tag V D Data

Figure 2.2: The structure of a CPU cache line.

2.1.3 Set Associative Caches

An important design aspect of CPU caches is determining where in the cache the retrieved

data from main memory can be placed. If a main memory word can only be placed in a

single cache location then the cache is called a direct-mapped cache. Figure 2.3(a) shows

the mapping of a main memory word into a direct-mapped cache. The direct-mapped cache

has m cache lines and the lowest log™ bits of the address is used to map a main memory

word into the cache. When deciding cache hits or misses, direct-mapped caches only need

to compare a single address tag. Thus direct-mapped caches are fast. The problem with

direct-mapped cache is that it incurs more cache misses, which can be illustrated with the

following example. Suppose a program generates a series of memory references such as the

following: OxlCD, 0x3CD, OxlCD, 0x3CD. Both of the two memory words are mapped to

the same cache line. This sequence of references causes a continuous stream of evictions

and replacements of cache lines. Thus, direct-mapped caches are fast but also have lower

hit rates. Studies [Prz90, HS89] found that reducing associativity from two-way to direct-

mapped increases the miss rate by 25%.

Another approach would allow a unit of data transfer to be placed in any one of the cache
lines in the cache. This is called a fully-associative cache. Replacement of data in a cache
line only occurs when the entire cache has filled up. The replacement algorithm in a fully-
associative cache can replace any cache line in the cache with the incoming cache line.
Fully-associative caches are believed to have the highest hit rates [HROO] for a large number
of replacement algorithms. The address tag is compared in parallel with all of the tags of all
the cache lines in order to retrieve the data quickly. However, a CPU cache typically consists
of hundreds of thousands of cache lines. The circuitry needed to do the parallel comparison
of all tags is expensive. Thus, except for some very small caches, no CPU caches are fully
associative [PH05].

PREVIE
W

8

A set associative cache combines concepts from direct-mapped cache and fully-associative

cache. Cache lines are organized into cache sets. A main memory word can be placed in

only one cache set but may be placed into any of the cache lines in the cache set. Essentially

this means that a memory word can only be placed in a subset of the cache. A main memory

address is divided into three fields: an address tag, set index and block offset. The set index

field is used to determine the cache set. The address tag uniquely identifies the memory word

and the offset is used to find the word within cache line. A set associative cache becomes a

fully associative cache when the cache has only one cache set.

The number of cache lines in a cache set is referred to as the associativity of the cache. For

example, if there are four cache lines in a cache set, the associativity is four, and the cache is

called a four-way set associative cache. Figure 2.3(b) shows the mapping of a main memory

word into a two-way set associative cache. The cache has the same number m of cache lines

and is arranged into ra/2 cache set. Each main memory word has two possible locations in

the cache. The lowest log™' bits of the address is used to map the word into the cache.

Figure 2.4 shows the structure an eight-way set associative CPU cache. The cache has 1024

cache sets. Each cache set has eight cache lines. Each cache line stores eight words. The

address the CPU is currently referencing is stored in the address latch. The middle ten bits of

the address latch is mapped to one of the 1024 cache sets. The lowest three bits is the block

offset to index into the eight words of a cache line. The highest 19 bits form the address tag.

All the eight address tags of a cache set are compared with the address tag in the address

latch. If there is a match, the hit/miss signal indicates a cache hit or miss.

2.1.4 Multiple Level CPU Caches

Modern CPUs usually have a hierarchy of caches. Most of the current CPUs have two levels

of CPU caches. The first level CPU cache is called the LI cache and can be accessed in one

or two cycles. The gate delay and wire delay limits the size of the LI cache. Typically, the

LI cache is only 32KB or 64KB. The same speed constraint also limits the associativity of

the LI cache. To achieve high speed, the LI cache may be direct-mapped.

The second level cache is called the L2 cache. L2 caches are typically accessed in around ten
CPU cycles and are much larger than LI caches [PH05]. The L2 cache usually has higher
associativity. L2 caches can be 16 or 32 way associative. Besides the LI and the L2 caches,
some CPUs have a level three cache. L3 caches are slower and larger than L1 and L2 caches.

PREVIE
W

0 1 2 " 3

CT 1 2 ^ 3

0 1

nfl

2 3 m

"' m+l" l+V+3

1

(a) Direct-mapped cache

0 1 2 3 ••• m/2-1

m/2^im/2 m/2+2

m-l n

m-1 n

(b) two-way set associative cache

Figure 2.3: The mapping of the main memory words into a direct-mapped cache and a two-
way associative cache.

Currently, both the L1 and the L2 caches use LRU replacement. LRU replacement at L2 and
L3 caches are actually Least Recently Missed replacement. The references at the LI cache
are invisible to the lower level caches. The most recently referenced or loaded address at
the L2 or L3 cache is not necessarily the address which the CPU most recently referenced
but the address most recently missed in the higher level cache. Since references to items in
the L2 cache are not exactly what the CPU is currently referencing but misses from the LI
cache, LRU at L2 and lower level caches is actually least recently missed replacement algo­
rithm. LRU at L2 cache does not exactly follow the definition of temporal locality [PHS98].
The hit rates of the LRU replacement at the L2 or L3 cache are low. This is considered by
[PHS98] to be a problem of LRU.

PREVIE
W

